Towards an integrated microbiome-host protein biomarker panel for early detection of ovarian cancer in routinely collected clinical samples

Subina Mehta, Andrew Rajczewski, Kristin Boylan, Amy Skubitz, Ashley Peterson, Pratik Jagtap, and Timothy J. Griffin

Microbiome and Cancer Symposium
Masonic Cancer Center, University of Minnesota
September 23, 2022

tgriffin@umn.edu
Proteogenomics Core

Proteogenomics: Integrate RNA-Seq and MS-based proteomics data to identify expressed variants and mechanisms of functional regulation
- Identify functional drivers and biomarkers
- Pathway analysis of cancer development, progression and intervention
- Peptide neoantigen identification

Meta-omics: Integrate meta-genomics, transcriptomics and proteomics (and metabolomics) data to study dynamic host-microbiome interactions
- Identify functional markers expressed by microbes and host
- Functional versus taxonomy response under different conditions
- Functional-taxonomic interactions

Results Visualization

Impact analysis of variants

Pathway/functional analysis

Taxonomic Abundance

Function-Taxonomy Interaction

Statistical classification

Pratik Jagtap
Significance and Rationale

- Ovarian cancer lacks reliable early detection methods.
- Dysbiosis in the female reproductive tract disrupts homeostasis between bacterial communities and host cells, linked to ovarian cancer.
- Microbiome-derived molecular markers, such as expressed proteins (the metaproteome), integrated with proteins expressed by the human host, may hold a key for early detection.
- Residual fluid from liquid Pap tests, routinely collected in the clinic, are a rich source of microbiome-expressed and human host proteins (our past collaborative work).

We hypothesize that quantitative metaproteomic and proteomic analysis of MS-based data collected from Pap test fluid from non-cancer and high grade serous ovarian cancer (HGSOC) individuals will reveal bacterial-host protein signatures with promise for early detection of ovarian cancer in commonly collected samples.
Bacterial proteins are detectable (along with host proteins) in Pap fluid samples using MS-based metaproteomics.
Re-analysis of a quantitative proteomics dataset in clinical Pap fluid samples: a metaproteomics perspective

20 non-cancer controls

20 HGSOC patients

Quantitative proteomics data

MetaNovo

GalaxyP

PepQuery

Human proteome database

Reduced metaproteome database

Quantified proteins and peptides
Preliminary results: Partial analysis of the full dataset

Relative amounts of bacterial and host proteins

Taxonomic distributions
Metaproteomics reveals unique taxonomic-functional relationships

Lactobacillus

Glycolytic metabolic enzyme network (fold-change cancer/non-cancer)

(from string-db.org)
Integrating bacterial-host protein signatures: diagnostic potential in Pap fluid samples

Glioma pathogenesis-related protein 1 performs dual functions in tumor cells

Junjie Wang, Zeyu Li, Fenfen Yin, Rui Zhang, Ying Zhang, Zhengxin Wang & Xiumei Sheng

Cancer Gene Therapy 29, 253–263 (2022) | Cite this article
345 Accesses 2 Citations 1 Altmetric Metrics

GLIPR cancer/non-cancer

Bacterial “Metabolic protein panel”
Aim 1

Shoot DNA sequencing

Aim 2

Quantitative proteomics dataset

Aim 3

Microbiome-host diagnostic peptide panel

Next steps

Figure 4. Overview of integrated Aims.
Thank You!

Questions welcome!