AN INTEGRATED GALAXY-DRIVEN WORKFLOW FOR HOST-MICROBIOTA PROTEOMICS AND TARGETED ASSAY DEVELOPMENT TO STUDY HOST-MICROBE DYNAMICS IN CLINICAL CYSTIC FIBROSIS SAMPLES

Monica E. Kruk, Subina Mehta, Katherine Do, James E. Johnson, Reid Wagner, Chris H. Wendt, John B. O’Connor, Theresa Laguna, Pratik D. Jagtap, and Timothy J. Griffin

Poster #4

Galaxy Community Conference
July 18, 2022

Galaxy for proteomics (Galaxy-P) team
University of Minnesota

tgriffin@umn.edu

Learn more at galaxyp.org
z.umn.edu/itcrgalaxyvideo
Background

- Airway microbiota composition correlates with cystic fibrosis (CF) progression, but microbial drivers of disease remain unclear.

- Mass spectrometry (MS)-based metaproteomics of bronchoalveolar lavage fluid (BALF) offers insights into host-microbe dynamics & potential interactions.

- We have developed a MS-based BALF analysis and Galaxy-driven bioinformatics processing of both host and microbial proteins, generating verified host and microbe peptide candidates suitable for targeted analysis within individual patient samples.

- We have utilized this workflow in our ongoing work to identify a promising host and microbe peptide panel for application to CF disease progression studies by comparison to disease control (DC).
Combined analytical and bioinformatic workflow

CF = cystic fibrosis
DC = disease control
CFL/H = cystic fibrosis with low/high microbial diversity
DCL/H = disease control with low/high microbial diversity
Results: 87 stringently filtered microbial peptides
Results: 87 stringently filtered microbial peptides

<table>
<thead>
<tr>
<th>Genus</th>
<th>Pseudomonas</th>
<th>Stenotrophomonas</th>
<th>Staphylococcus</th>
<th>Prevotella</th>
<th>Fusobacterium</th>
<th>Streptococcus</th>
<th>Sphingomonas</th>
<th>Moraxella</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF/DC Ratio</td>
<td>109.7</td>
<td>49.0</td>
<td>21.1</td>
<td>16.0</td>
<td>8.8</td>
<td>5.8</td>
<td>4.5</td>
<td>0.001</td>
</tr>
<tr>
<td>Peptides Detected</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Function</td>
<td>Type II secretion system</td>
<td>SGL protein</td>
<td>Eap/MAP</td>
<td>ISS family transposase</td>
<td>Penicillin-binding prot.</td>
<td>LKG protein</td>
<td>Uncharacterized protein</td>
<td>Outer membrane prot.</td>
</tr>
</tbody>
</table>

Microbe MS Intensity in CF vs. DC

Monica Kruk
What about the human proteins?

STRING-Db Pathway

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CF/DC Ratio (MS Intensity)</td>
<td>196.54</td>
<td>13.99</td>
<td>6.62</td>
<td>5.69</td>
<td>4.56</td>
<td>0.25</td>
<td>0.16</td>
<td>0.12</td>
<td>0.07</td>
<td>0.00</td>
</tr>
<tr>
<td>Protein Examples</td>
<td>Deoxyribonuclease-1</td>
<td>Dynein light chain Tctex-type 1</td>
<td>Protein S100-A8</td>
<td>Isoform 3 of Phosphorylase b kinase regulatory subunit beta</td>
<td>Neutrophil elastase</td>
<td>Guanylate-binding protein 2</td>
<td>Calcium-activated chloride channel regulator 1</td>
<td>Apolipoprotein E</td>
<td>Rootletin</td>
<td>Ankyrin-3</td>
</tr>
<tr>
<td>Pendrin</td>
<td>Intraflagellar transport protein 56</td>
<td>Neutrophil collagenase</td>
<td>Serine/threonine-protein phosphatase PP1-beta catalytic subunit</td>
<td>Azurocidin</td>
<td>Ubiquitin/ISG15-conjugating enzyme E2 LG</td>
<td>Chloride intracellular channel protein 3</td>
<td>Serum paraoxonase/arylesterase class 1</td>
<td>Ciliary rootlet coiled-coil protein 2</td>
<td>Cingulin</td>
<td></td>
</tr>
</tbody>
</table>

Monica Kruk
What’s next?

- Validate microbial and human peptides from proteins of interest via targeted mass spectrometry methods (Parallel reaction monitoring, PRM)
- Demonstrate the ability to detect and quantify microbial and host peptides in individual samples, as an assay for characterizing bacterial and human dynamics in CF

Interested in proteomics/metaproteomics in Galaxy?

“Introduction to Metaproteomics” training session,

1:20 pm today, Monday