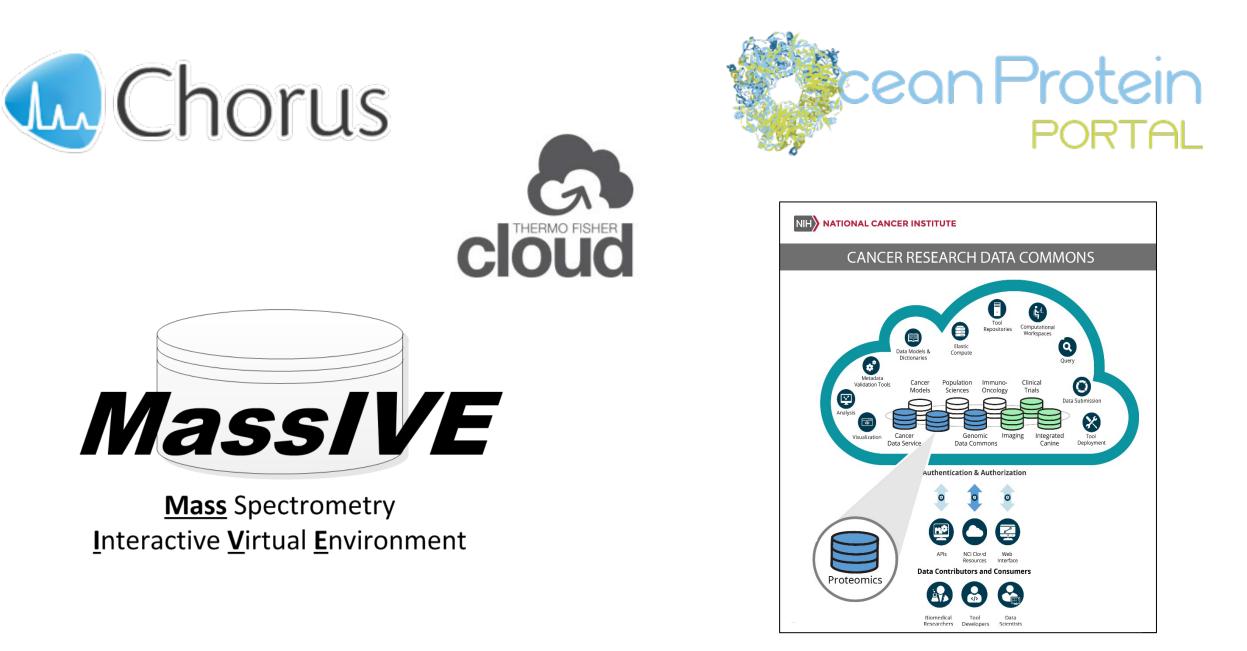
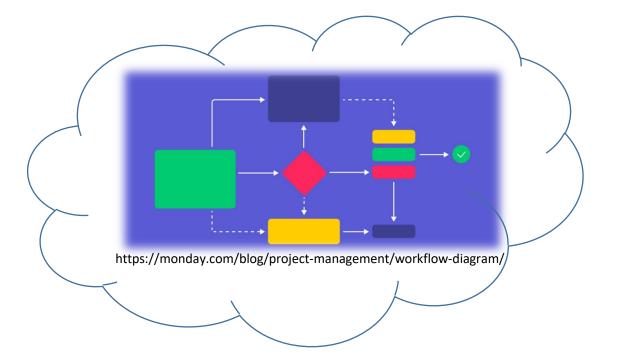
Cloud Resources for Proteomics Analysis

June 8, 2022 5:45 – 7:00 PM, Room 200 FG

Cloud computing and proteomics



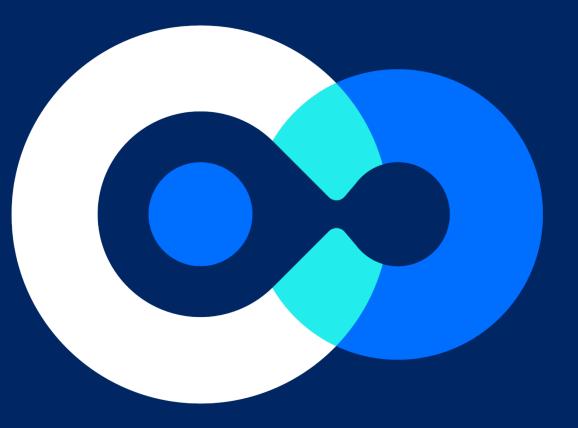
https://scouttg.com/blog/articles/what-is-cloud-computing/



"The practice of using a network of <u>remote</u> servers hosted on the internet to store, manage, and process data, rather than a local server or a personal computer."

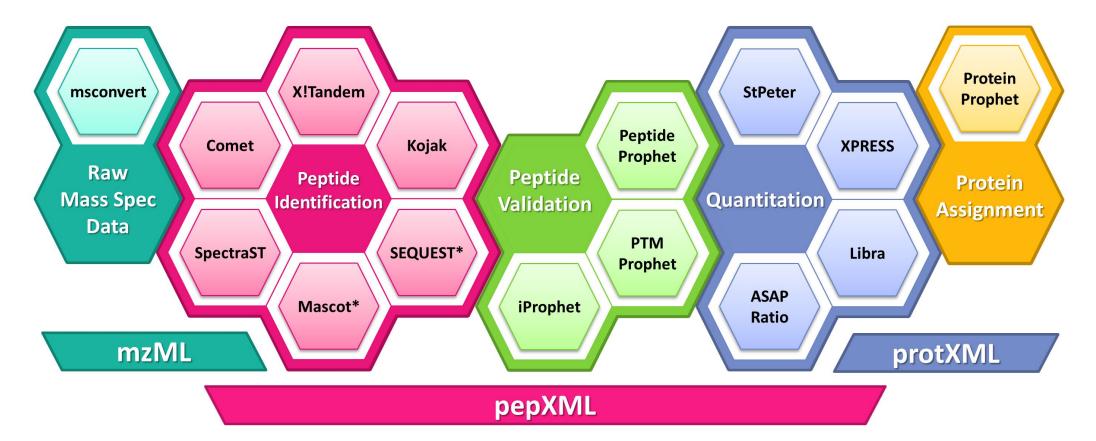
Cloud resources for proteomics: many and diverse

Our focus: cloud resources for data analysis tools and workflows


Talk 1: TPP resources for Proteomics Analysis (Michael Hoopmann): 10 minutes

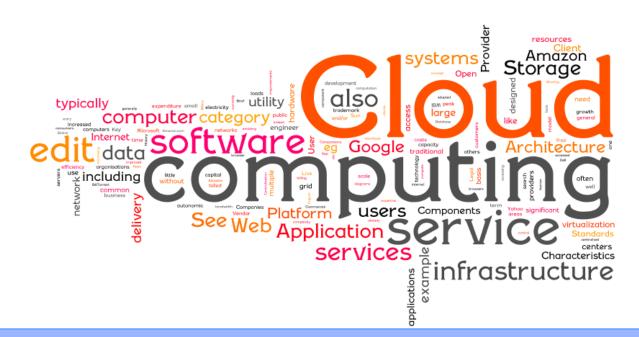
Talk 2: Galaxy resources for Proteomics Analysis (Pratik Jagtap): 10 minutes

Talk 3: Nextflow for Proteomics Analysis. (Veit Schwämmle): 10 minutes


Panel Discussion

Trans-Proteomic Pipeline Resources for Proteomics Analysis

Michael Hoopmann, Institute for Systems Biology ASMS 2022


Trans-Proteomic Pipeline (TPP) Overview

Free and open source suite of software tools and file formats that facilitates and standardizes proteomics analysis

Runs on Windows, Linux, and cloud platforms

So What is Cloud Computing?

Cloud computing is Internet-based computing, whereby shared resources, software, and information are provided to computer and other devices on demand, like the electricity grid.

--Wikipedia

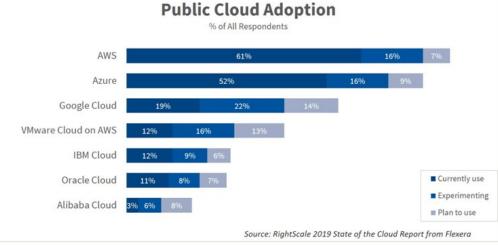
SaaS Software as a Service

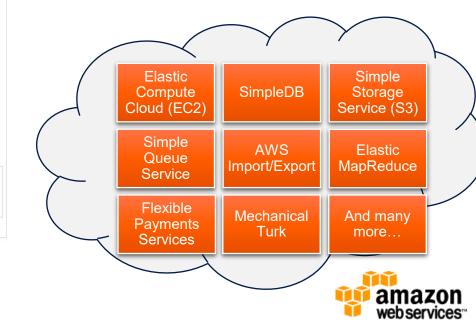
- Software applications available via the browser.
 - e.g. Gmail, flickr, NCBI

PaaS Platform as a Service

 Hosted development environment for building and deploying cloud applications.

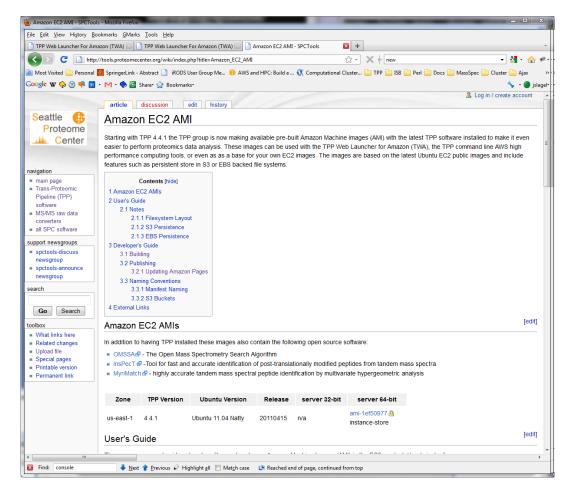
e.g. Google Apps, Microsoft Azure, Salesforce.com


Infrastructure as a Service


• Storage, servers and networking components provided on demand through the internet.


e.g. Amazon EC2 & S3, Rackspace, IBM, HP

Cloud Computing and Amazon Web Services



- Collection of web computing services offered by Amazon
- "Elastic" IT infrastructure – allocate computers, storage, and other services as needed
- Cost effective -- pay only for what you use
- Easy to use simple API accessed over HTTP which supports almost every language
- Large number of tools available built for it

TPP Amazon Images

Publicly available Amazon Machine Instances (AMI) for the TPP

- Based on official public releases of Ubuntu
- Contain additional open software (OMSSA, Myrimatch, etc.)
- Publicly available scripts for building, updating and publishing images
- Instructions on usage and details documented on wiki site

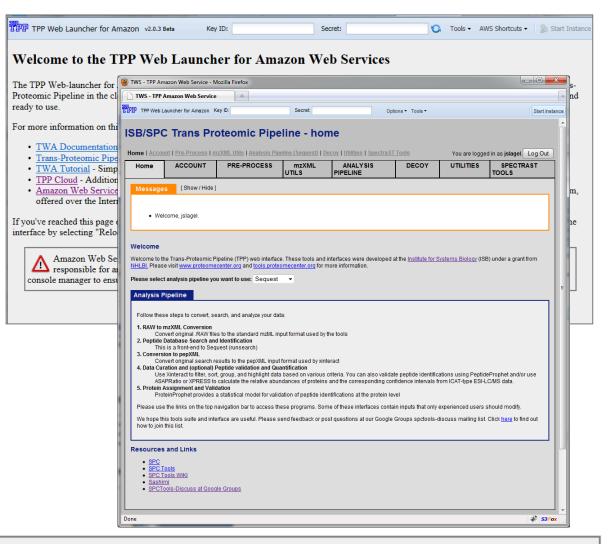
Using TPP on the Cloud

TPP Web Application (TWA)

- Simple web based launcher to start petunia on a Amazon server
- Starts up an pre-configured TPP instance
- Doesn't require any software installation and is inexpensive to run
- Great tool for just trying out TPP
- Can be used when memory and better CPU is needed for an analysis

TPP Amazon Command Line Tools (amztpp)

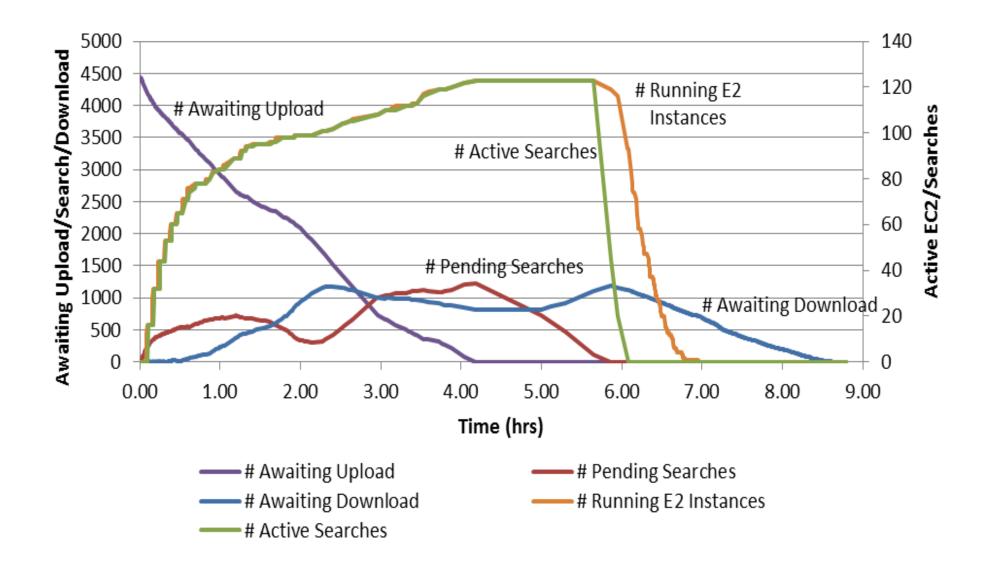
- Advanced command line toolset
- Launches parallel searches of files across multiple nodes
- Currently supports X!Tandem, OMSSA, MyriMatch, InsPect
- Manage all aspects of cloud computing including data transfer, scheduling, and instances
- Great for quickly and inexpensively processing large amounts of data



Direct Cloud support in TPP's User Interface, Petunia

TPP Web Launcher for Amazon (TWA)

- 1. Navigate to http://tools.proteomecenter.org/twa
- 2. Enter your Amazon Key ID and Secret
- 3. Click "Start Instance"
- 4. Welcome to Petunia
- 5. When you are done just click "Stop Instance"



Amazon Web Services is not a free cloud service. Neither the developers of TPP nor the Institute of Systems Biology can be held responsible for any charges that may occur, expected or otherwise, for the use of this software. It is strongly advised to use the AWS console manager to ensure that any services used are stopped and/or any storage deleted.

Costs of Cloud Computing

Canis lupus famili	aris Data Set		Operation	Spot Price	Hours	Cost
			m1.xlarge	\$ 0.216	95	\$ 20.52
• Total 982 raw file	es organized in 35 folders		m1.xlarge	\$ 0.22	328	\$ 72.16
	s from LTQ Orbitrap		Subtotal		423	\$ 92.68
		E C	Operation	Price	Usage	Cost
 288 raw files 		2	PublicIP-In	\$ 0.12/GB	0.0062	\$ 0.00
 96 raw files 			1071	\$ 0.12/GB	0.0105	\$ 0.00
Searched using	 Total AWS cost of 	\mathbf{D}	12.14	\$ 0.12/GB	0.0211	\$ 0.00
				\$ 0.12/GB	0.0005	\$ 0.00
MyriMatch and C	 82% was EC instances 					\$ 0.00
 Total of 3,928 				\$ 92.68		
 Total of 10,759 	• Time to completion 5.95 hrs (+ download)			Price	Usage	Cost
				\$0.01/1,000	11,909	\$ 0.12
• Spot price (ec				\$0.01/10,000	17,433	\$ 0.02
\$.2160)		5	Data Transfer In	\$ -	118.08	\$ -
• Max # of EC2 in:	stances (-m) = 200		Data Transfer Out	\$ 0.12/GB	165.56	\$ 19.87
			S3 Total			\$ 20.00
	el upload/download = 10		Operation	Price	Usage	Cost
processes (-P) =		S	Requests	\$0.01/10,000	58,392	\$ 0.06
		QS	Data Transfer In	\$ -	0	\$ -
			Data Transfer Out	\$ 0.12/GB	0.023	\$ 0.00
			SQS Total			\$ 0.06

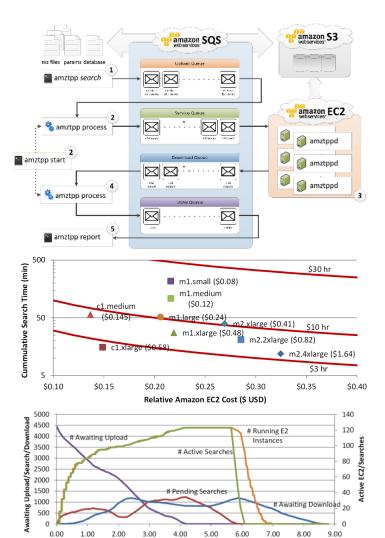
Amazon Web Services Cost Management

Learn More About AWS & TPP

Technological Innovation and Resources

© 2015 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.moporline.org

Processing Shotgun Proteomics Data on the Amazon Cloud with the Trans-Proteomic Pipeline*[®]


Joseph Slagel‡, Luis Mendoza‡, David Shteynberg‡, Eric W. Deutsch‡§, and Robert L. Moritz‡

Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Protecmic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four protecinic

an important proteomics technique that has enabled researchers to identify and quantify proteins in complex biological samples in a high throughput manner. Mass spectrometers continue their incremental increases in sensitivity, mass accuracy, and speed of data collection, thereby generating comprehensive highly accurate data on smaller and smaller sample sizes. Software tools have likewise become more sophisticated and have enabled improved interpretation of the mass spectra that are generated all at the cost of greater computational resources (1). Simply applying cutoffs to native search scores has been replaced with algorithms that model the output scores and other attributes of the peptide-spectrum matches (PSMs) to yield improved probabilistic metrics for peptide and protein identifications (2–4).

The typical bioinformatics workflow for analyzing such shotgun data (5) relies on an algorithm that matches the set of spectra generated by the instrument against a set of candidate matches. These candidates can be either theoretical spectra generated from a set of plausible candidate peptides selected from a set of protein sequences, termed sequence searching, or a set of previously identified mass spectra, termed spectral library searching. There are a large number of both commercial and open-source sequence search engines available for use (see (5) for references to many of these). They perform comparably over a wide range of data sets, although the output scores and formats vary significantly, thereby making comparison and integration of results challenging. How-

Time (hrs)

Running E2 Instances

Active Searches

Awaiting Download

Cloud Computing Workshop (2022)

The iPRG will conduct a series of online video tutorials about the use of cloud computing resources for MS-based proteomics, focusing on Nextflow, the Trans-Proteomic Pipeline (TPP) and Galaxy Platform.

12-16 September 2022

Trans Proteomic Pipeline

Michael Hoopmann - ISB, Seattle, WA

- Instructions on how to use TPP to analyze MS data.
- Answer questions from the participants

3-7 October 2022

Galaxy

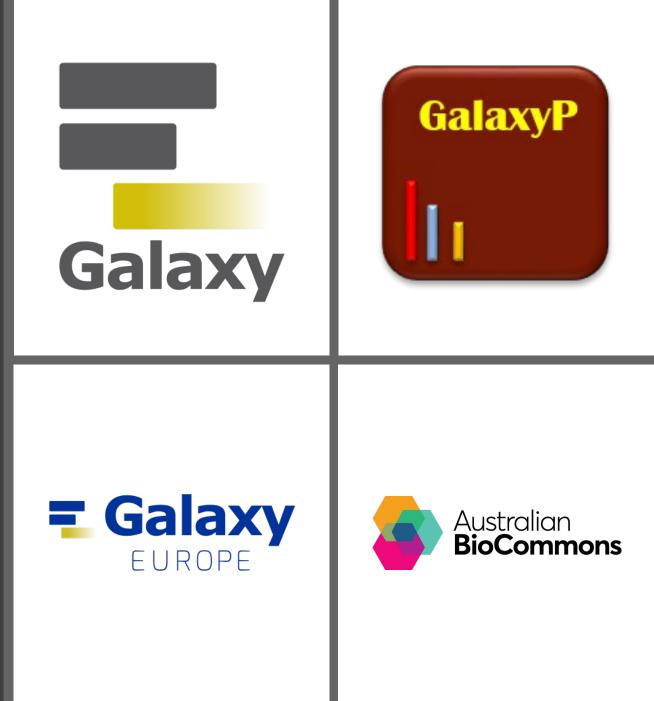
Melanie Foell - Freiburg University, Germany

- Instructions on how to use
 Colored to enable MS data
- Galaxy to analyze MS data.
- Answer questions from the participants

14-18 November 2022

nextflow

Yasset Perez-Riverol - *EBI, Hinxton, UK*


- Instructions on how to use
 Nextflow to analyze MS data.
- Answer questions from the participants

REGISTRATION LINK:

https://abrf.memberclicks.net/cloudcomputingworkshop

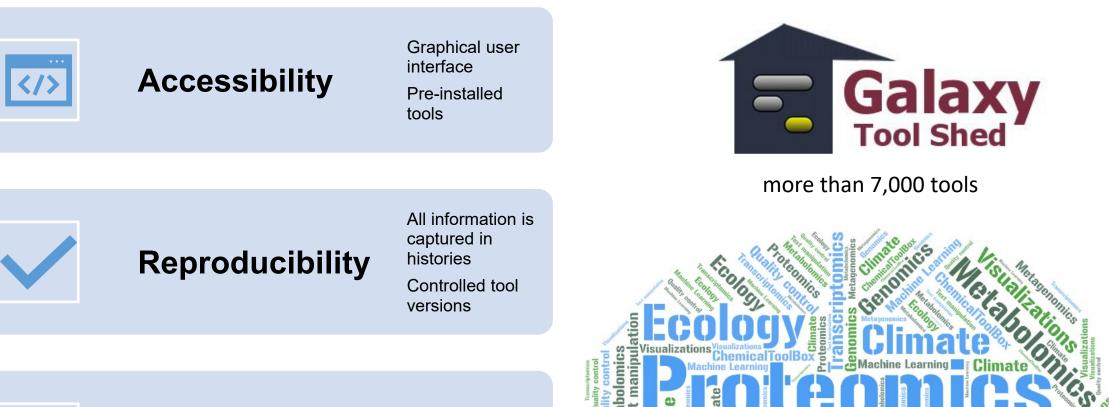
Proteomic Data analysis in Galaxy

https://galaxyproject.org

Data Intensive analysis for everyone

F Galaxy PROJECT

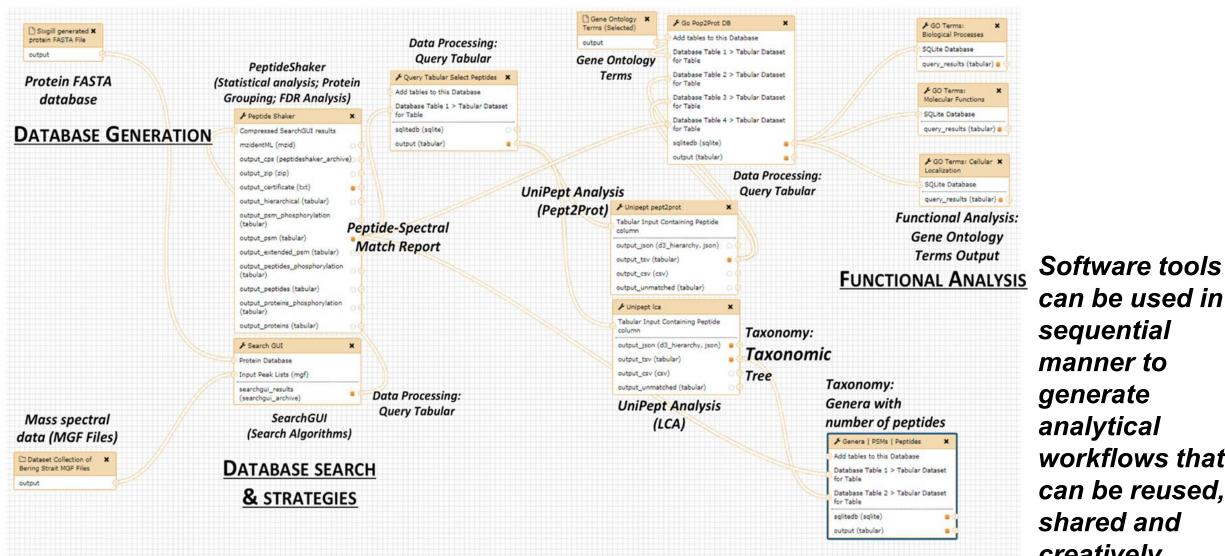
- **Web-based** platform for computational biomedical research
- Developed at Penn State, Johns Hopkins, OHSU and Cleveland Clinic
- Community driven
- **Open source** under Academic Free License
- More than 10,000 citations
- More than 125 public Galaxy servers
- Usegalaxy.* instances:
 - Usegalaxy.org, usegalaxy.org.au, usegalaxy.eu


Nucleic Acids Res, gkac247, https://doi.org/10.1093/nar/gkac247

Analysis history

🚍 Galaxy Europe	Analyze Data Workflow Visualize 🗸 Shared Data 🕶 Help 🕈 User 🕈 🏭 🖻	
Tools 🏠 📩		History 🕃 🕇 🖽 🏟
search tools	MaxQuant (Galaxy Version 1.6.10.43+galaxy3)	search datasets 🛛 🕄 😒
	Input Options 💿	MaxQuant Serum samples
Get Data	choose the type of your input files	64 shown
Send Data	thermo.raw	11.53 MB 🗹 🏷 🗩
Collection Operations	FASTA files	
GENERAL TEXT TOOLS = Text Manipulation	🗘 🗅 4: Protein_database 🏠	64: Filter on data 57 💿 🖋 🗙
		63: Filter on data 57 💿 🖋 🗙
Filter and Sort		62: Filter on data 57 💿 🖋 🗙
Join, Subtract and Group		61: Select on data 57 💿 🌶 🗙
Convert Formats	Specify one or more FASTA databases.	
FASTA/FASTQ	identifier parse rule	60: PTXQC report for d () I X ata 6 and data 4
FASTQ Quality Control	>.*\\(*)\\	59: MaxQuant Peptides 🛛 🕢 🗙
Quality Control	description parse rule	for data 6 and data 4
SAM/BAM	>(*) <	58: mqpar.xml for data 🛛 🕢 🗙
BED	Modify parse rules if needed.	6 and data 4
	would parse rules il needed.	57: MaxQuant Protein 💿 🖋 🗙
VCF/BCF	Search Options	Groups for data 6 and data 4
Nanopore COMMON GENOMICS TOOLS	Specify an experimental design template (if needed). For detailed instructions see the help text.	56: PTXQC report for d 💿 🖋 🗙
Operate on Genomic Intervals	C V Nothing selected	ata 6 and data 4
Fetch Sequences / Alignments	minimum peptide length	55: MaxQuant Peptides 🛛 🕢 🗙
GENOMICS ANALYSIS	7	for data 6 and data 4
Annotation	Peptides shorter than this value will not be reported nor be considered during protein identification and quantification short peptides are usually not unique in the protein database and therefore not	54: mqpar.xml for data 🛛 🕢 🗙
Multiple Alignments	statistically informative.	6 and data 4
Assembly	maximum peptide mass [Da]	53: MaxQuant Protein () / × Groups for data 6 and
Mapping	4600	data 4
Variant Calling	Peptides that are heavier than this mass will be discarded in the Andromeda search.	52: PTXQC report for d 💿 🖋 🗙
Genome editing	minimum unique peptides	ata 6 and data 4

Ecology Ecology


Metagenom

Transparency

Sharing of histories and workflows

SOLUTION: GALAXY BIOINFORMATICS PLATFORM

Blank et al Proteomes 2018, 6(1), 7; https://doi.org/10.3390/proteomes6010007

can be used in a workflows that can be reused, creatively modified.

GTN: HANDS-ON TRAINING MATERIAL WITH INSTRUCTIONAL VIDEOS

Welcome to Galaxy Training!

Collection of tutorials developed and maintained by the worldwide Galaxy community

Galaxy for Scientists

Торіс	Tutorials
Introduction to Galaxy Analyses	10
Assembly	5
Climate	2
Computational chemistry	6
Ecology	5
Epigenetics	6
Genome Annotation	3
Imaging	3
Metabolomics	4
Metagenomics	6
Proteomics	15
Sequence analysis	2
Statistics and machine learning	8
Transcriptomics	23
Variant Analysis	8
Visualisation	2

Galaxy Tips & Tricks	
Торіс	Tutorials
User Interface and Data Manipulation	16
Galaxy for Developers and	Admins Tutorials
2	

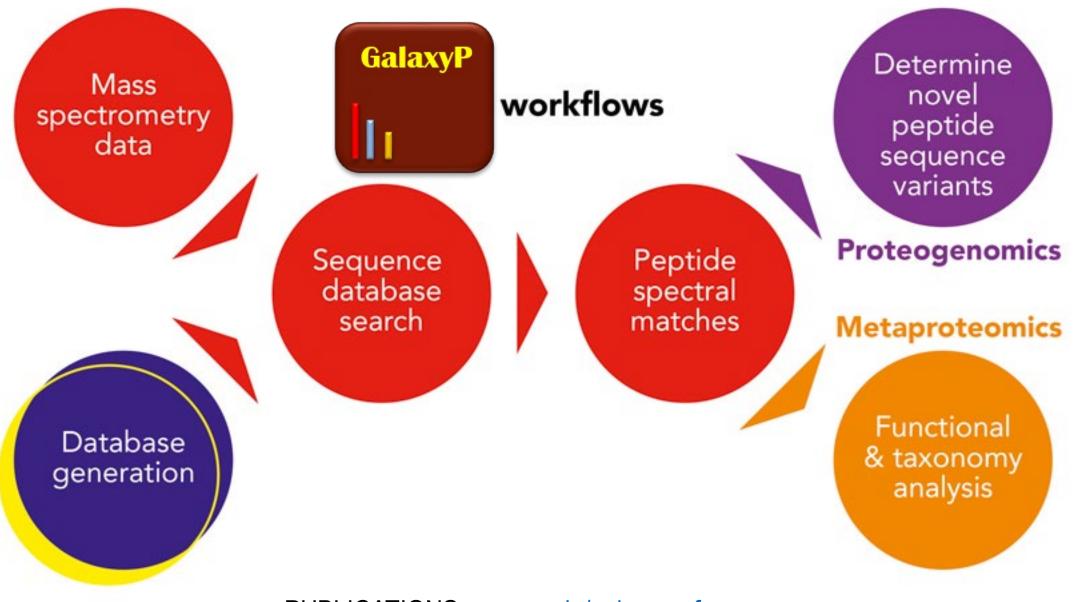
How to contribute?

First off, thanks for taking the time to contribute!

You can report mistakes or errors, create more contents, etc. Whatever is your background, there is probably a way to do it: via the GitHub website, via command-line. If you feel it is too much, you can even write it with any text editor and contact us: we will work together to integrate it.

To get you started, check our dedicated tutorials or our Frequently Asked Questions

Galaxy for Contributors and Instructors


Торіс	Tutorials
Contributing to the Galaxy Training Material	10
Teaching and Hosting Galaxy training	5

> 130 training materials

https://training.galaxyproject.org/training-material

- proteomics tutorials in Galaxy: <u>https://training.galaxyproject.org/training-material/topics/proteomics</u>
- Global online Galaxy course in March (much more than proteomics) <u>https://gallantries.github.io/posts/2021/12/14/smorgasbord2-tapas/</u>

PUBLICATIONS: <u>z.umn.edu/galaxypreferences</u>

ACCESSING MULTIOMIC GALAXY WORKFLOWS

Tools and Workflows also available on :

https://proteomics.usegalaxy.eu/

Galaxy Training Network: https://training.galaxyproject.org/trainingmaterial/topics/proteomics

Galax

Galaxy Europe: https://proteomics.usegalaxy.eu/

Contact: http://galaxyp.org/contact/

3-7 October 2022

MaxQuant and MSstats in Galaxy Enable Reproducible Cloud-Based Analysis of Quantitative Proteomics Experiments for Everyone

Niko Pinter, Damian Glätzer, Matthias Fahrner, Klemens Fröhlich, James Johnson, Björn Andreas Grüning, Bettina Warscheid, Friedel Drepper, Oliver Schilling, and Melanie Christine Föll*

Cite this: J. Proteome Res. 2022, 21, 6, 1558–1565
 Publication Date: May 3, 2022
 https://doi.org/10.1021/acs.jproteome.2c00051
 Copyright © 2022 American Chemical Society

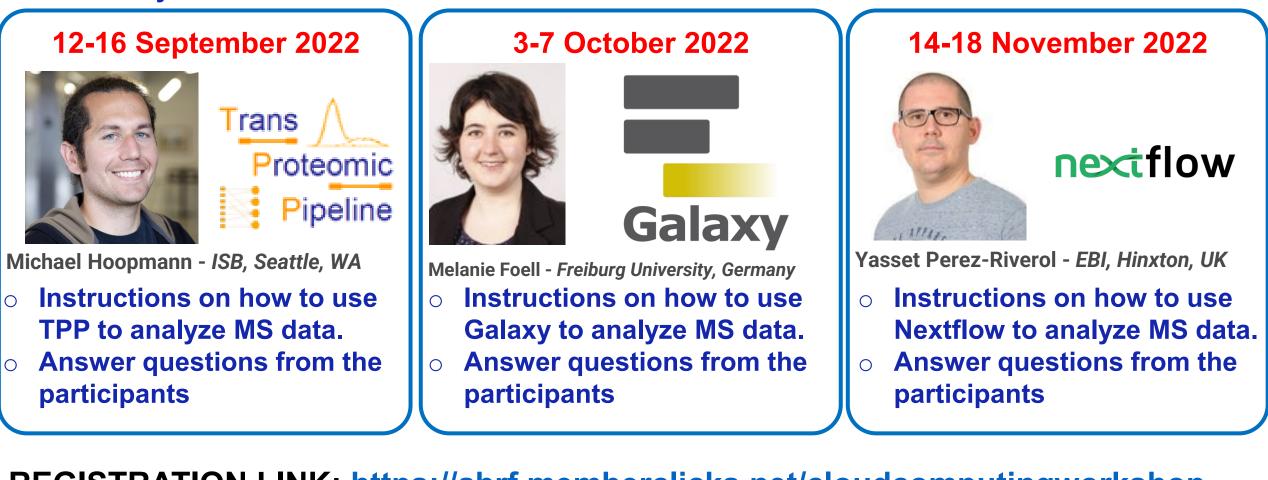
 Article Views
 Altmetric
 Citations
 Share
 Add to

 288
 18
 Image: Citation service of the serv

Export

RIS

Melanie Foell, Freiburg University, Freiburg (Germany)


Hands-on

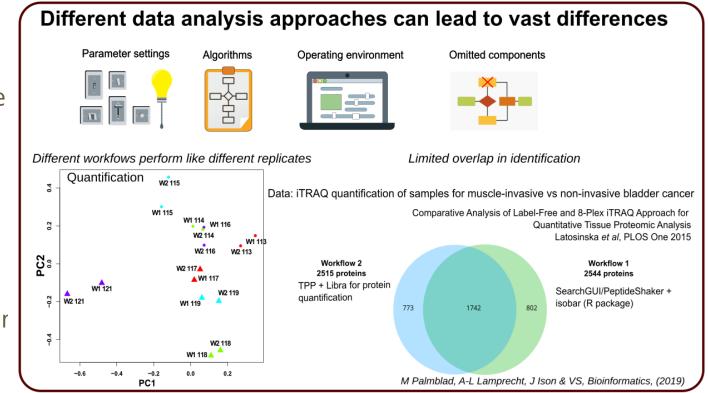
Tutorial: MaxQuant and Msstats for the analysis of label-free data <u>https://training.galaxyproject.org/training-</u> <u>material/topics/proteomics/tutorials/maxquant-label-</u> <u>free/tutorial.html</u>

Video with demonstration of tutorial in youtube: <u>https://www.youtube.com/watch?v=IXdLAt2PAT4</u>

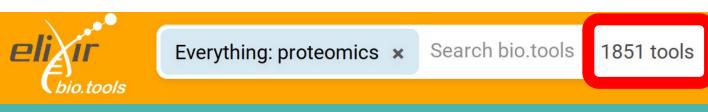
Cloud Computing Workshop (2022)

The iPRG will conduct a series of online video tutorials about the use of cloud computing resources for MS-based proteomics, focusing on Nextflow, the Trans-Proteomic Pipeline (TPP) and Galaxy Platform.

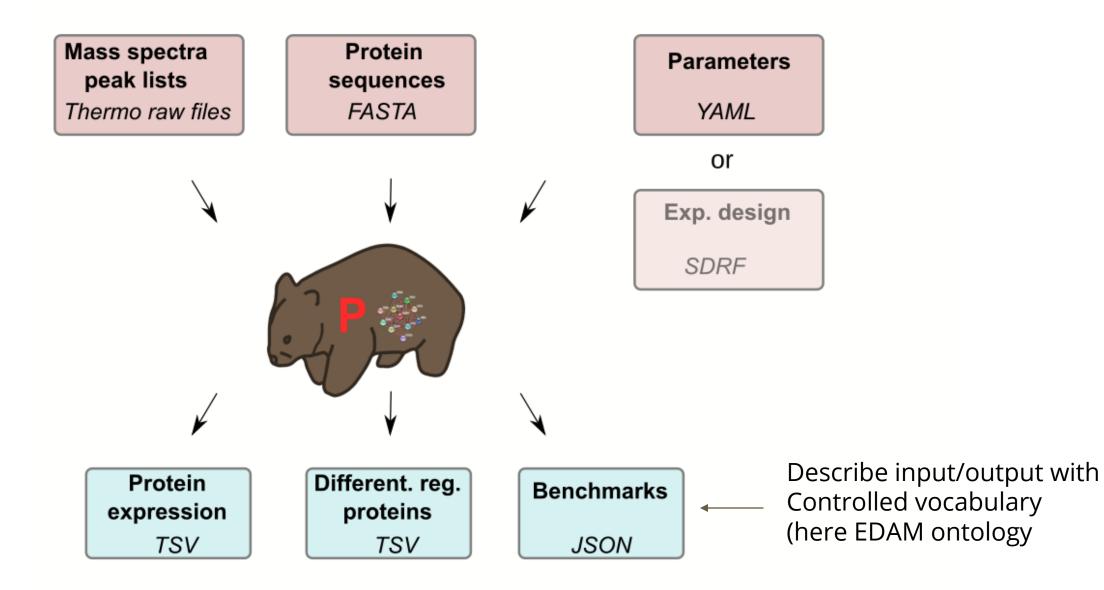
REGISTRATION LINK: https://abrf.memberclicks.net/cloudcomputingworkshop


Proteomics Workflows in NextFlow with Focus on Benchmarking

Veit Schwämmle


University of Southern Denmark

Motivation

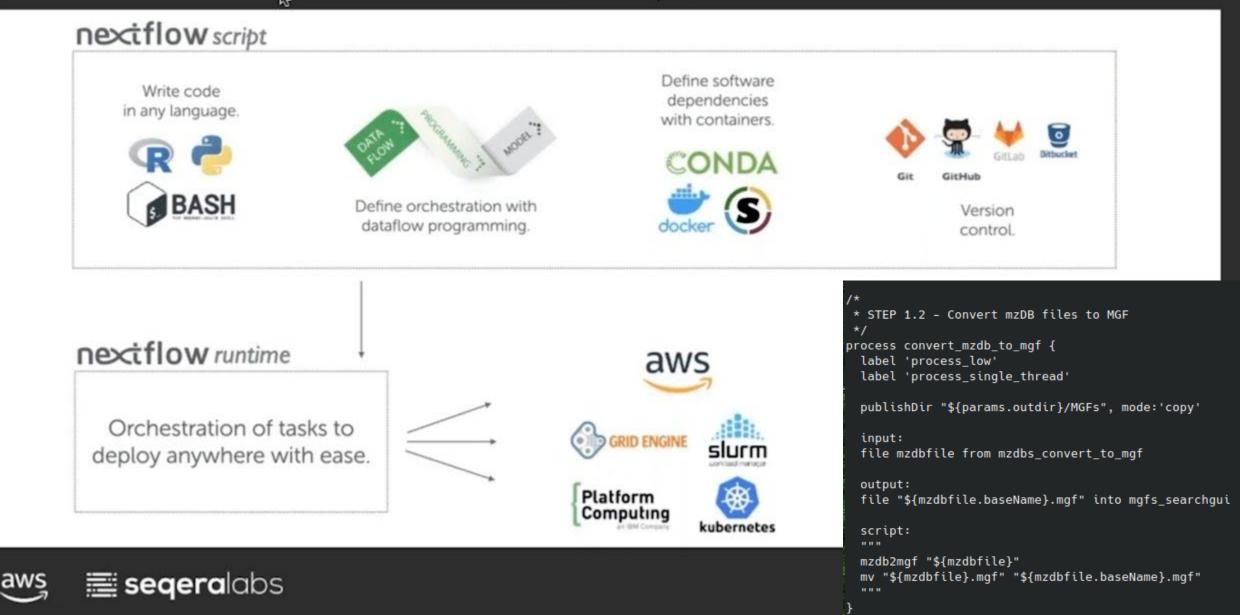

- Data and software heterogeneity in proteomics
- Many different methods and algorithms to analyze proteomics data
- Different workflows exist but mostly not portable and not very scalable
- Composition of new workflows built on informatior from already implemented ones

Now what?

Full analysis of data from label-free bottom-up MS

Implementations in

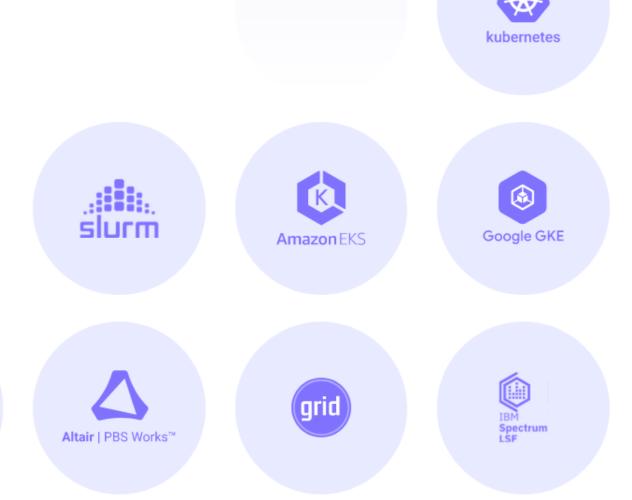
5 different workflows with dockerized software


- a) Compomics / FlashLFQ / MSqRob
- b) MaxQuant / Normalyzer
- c) OpenMS / ProteomicsLFQ
- d) Trans-Proteomic Pipeline / ROTS
- e) SearchGUI / Proline / PolySTest

WOMBAT: WOrkflow Metrics, Benchmarking and AnalyTics in Proteomics

github.com/wombat-p

Fundamentals of Nextflow Pipelines


AWS BATCH

Automatically provision, manage and scale compute environments in the cloud, or tap existing on-premises or cloud HPC and Kubernetes clusters for maximum flexibility.

Azure Batch

Google Life

Sciences

Benchmarking

Set of performance and data quality metrics

Category	Aspect	Subgroup	Name	Definition	Value
Functionality	Traceability	Spectra	Tracable spectra	Results tracable to original spectra	Y/N
Functionality	Traceability	Spectra	Universal spectrum identifiers	Workflow generates USIs (Universal Spectrum Identifier)	Y/N
Functionality	Traceability	Spectra	Peptide to spectra	Corresponding spectrum numbers/ids available from peptide level	Y/N
Functionality	Traceability	Spectra	Protein to spectra	Corresponding spectrum numbers/ids available from protein level	Y/N
Functionality	Traceability	File names	Results to raw files	Raw input file names preserved in tables on PSM/peptide/protein level	Y/N
Functionality	Traceability	File names	Public raw files	Raw files publicly available	Y/N
Functionality	Traceability	Parameters	Settings	Are all processing settings available with result files	Y/N
Functionality	Traceability	Parameters	Experimental design	Biological and technical replicates can be identified in results	Y/N
Functionality	Reproducibility	Files	Identity	Can exact result be reproduced	Y/N
Functionality	Performance	Identification	PSM number	Number of identified PSMs passing preset FDR	Integer
Functionality	Performance	Identification	Peptide number	Number of uniquely identified peptide identifications passing preset FDR	Integer
Functionality	Performance	Identification	Protein number	Number of uniquely identified protein identifications passing preset FDR	Integer
Functionality	Performance	Identification	Protein group number	Number of different protein groups passing preset FDR	Integer
Functionality	Performance	Identification	Peptide coverage	Percentage of peptides identified in all samples	Double
Functionality	Performance	Identification	Protein coverage	Percentage of proteins identified in all samples	Double
Functionality	Performance	Identification	Peptides per protein	Distribution of peptides per protein group	Set of Integer

Harmonized workflow output on peptide and protein level

Statistical testing as workflow component adds valuable info

	Performance:
	<pre></pre>
0.0793	<pre> PSMNumber:</pre>
0.0566	Θ:
es:	<pre>veptideNumber:</pre>
0.9773 ns:	0:
0.9989	➡ ProteinNumber:
2452	0:
6458 ge:	<pre> ProteinGroupNumber: </pre>
43.36	0:
oups: 984	PeptideCoverage:
ge:	0:
190.2964	<pre> ProteinCoverage: </pre>
atedPeptides5Perc:	0:
37.6944	PeptidesPerProtein:
86.6389 1.6389	• 0:
54.6111	Var1:
48.3611	Freq:
0.5278 43.9444	▼ 1:
33.6944	Var1:
82.6389	
28.6944	Freq:
	▼ 2:
	Var1:
	Freq:
	▶ 3:
ormation	▶ 4:
ormation	5:
	► 6:
	▶ 7:
	▶ 8:
	▶ 9:
	Quantification:
	▼ CVPeptides:
	0:
	▼ CVProteins:
	Θ:

Quantification:

v CVPeptides:

v CVProteins:

CorrelationPeptide

CorrelationProtein

DynamicPeptideRang

NumberOfProteinGro

DynamicProteinRang

DifferentialRegul

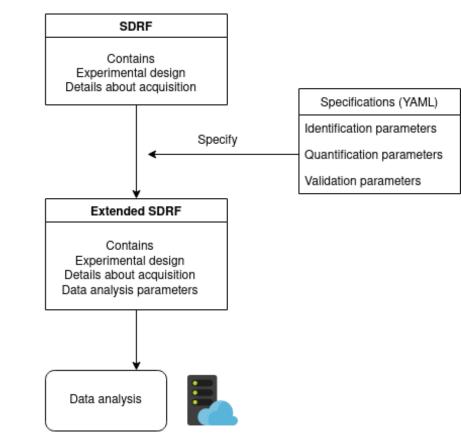
convert_raw_mgf (17)		;	211 3 137 1.7 30	
convert row mam (4)	1	I.	4m 1s / 1.8 GB	
convert_raw_mzml (6)	I	I	2m 33s / 591.6 MB	
convert_mzml_mzdb (1)	1	I	211 0037 571.0146	
	1	1	2m 27s / 593.8 MB	
convert_mzml_mzdb (2)	I	1	211 2737 575.0 1415	

Execution

Nextflow allows extensive scaling

Further tasks for better performance and usage:

- Simple web interface for execution on the cloud. Alternative (commercial) solution: nf.tower
- Create missing bioconda packages
- Automatic runs using new PRIDE metadata standard (SDRF format)
- Generalized input parameter set for analysis
- Done: automatic calculation of generalized benchmarks on standardized output


SDRF format as starting point

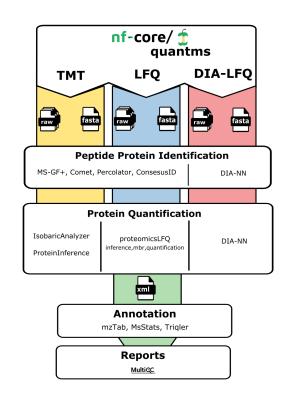
Standardize SDRF for data analysis: Extend SDRF to include parameter settings for analysis

-> Unified format to describe experimental design and "optimal" parameters

-> Re-run by specifying extended SDRF only

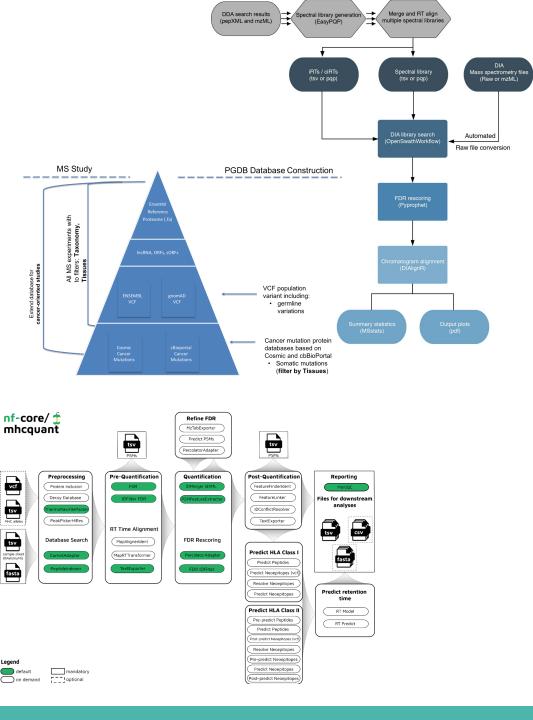
-> Need for more annotations of experimental design

Other NextFlow implementations


nf-core to make workflows "production-ready"

nf-co.re/pgdb

nf-co.re/diaproteomics


nf-core/quantms

nf-core/mhcquant

vcf tsv MHC alleles

sample shee (RAW/mmM)

Acknowledgements

Implementation Study:

Comparison, benchmarking and dissemination of proteomics data analysis pipelines

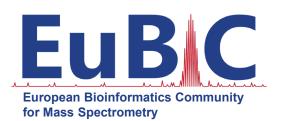
Node	Name of PI	Role (lead or
Denmark	Veit Schwämmle, Jon Ison	member) Lead
EMBL-EBI	Juan Antonio Vizcaíno	Member
Netherlands	Magnus Palmblad, Anna-Lena Lamprecht, Peter Horvatovich	Member
Spain	Salvador Capella-Gutierrez, Josep Ll. Gelpi	Member
Spain	Eduard Sabidó (Fernando Corrales, ProteoRed)	Member
France	Yves Vandenbrouck, David Bouyssié, Wolfgang Raffelsberger	Member
Sweden	Fredrik Levander (Lund University)	Member
Sweden	Ola Spjuth (Uppsala University)	Member
Italy	Gianluigi Zanetti (CRS4)	Member
Czech Republic	Martin Hubalek	Member
Germany	Martin Eisenacher, Julian Uszkoreit	Member
Germany	Oliver Kohlbacher, Timo Sachsenberg	Member
EMBL-EBI	Steven Newhouse	Member
	•	

Wolfgang Raffelsberger, University of Strasbourg

EuBIC-MS Developers Meeting 2023

SAVE THE DATE 15-20 January 2023, ETH Congressi Stefano Franscini, Monte Veritá, Switzerland SUBMIT YOUR HACKATHON PROPOSAL Deadline 30 September 2022

Confirmed keynote speakers

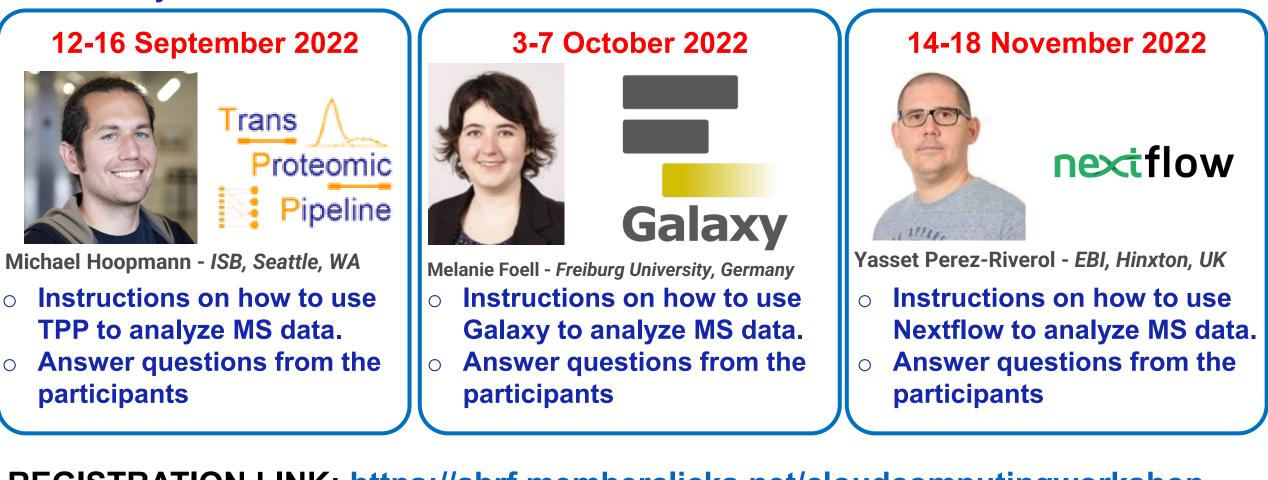

Karsten Borgwardt

Alexey Nesvizhskii

Maximilian Strauss

Keynotes by experts in the field of bioinformatics and proteomics Hackathons from selected abstracts Meet and team up with developers Poster session ... and much more!

MORE INFO www.eubic-ms.org @EuBIC_ms



Cloud Computing Workshop (2022)

The iPRG will conduct a series of online video tutorials about the use of cloud computing resources for MS-based proteomics, focusing on Nextflow, the Trans-Proteomic Pipeline (TPP) and Galaxy Platform.

REGISTRATION LINK: <u>https://abrf.memberclicks.net/cloudcomputingworkshop</u>