Translational metaproteomics

Analysis of Functions Expressed by Microbiomes CSIR-IMTech workshop, November 2021

Tim Griffin
University of Minnesota

tgriffin@umn.edu

Learn more at galaxyp.org z.umn.edu/itcrgalaxyvideo

MICROBIOME

Potential to unravel the mechanistic details of microbial interactions with host / environment by analyzing the functional dynamics of the microbiome.

TAXONOMY

function

TAXONOMY function

TAXONOMY FUNCTION

Microbial communities and microbiomes contribute to cancer

'Secretomics' to identify microbial molecules and host interactions

 Microbiota-secreted molecules mediate hostbacteria interactions and may regulate host cells

Secreted molecules:

- **Proteins** identified via metaproteomics
- Peptides may contribute (metapeptidomics); nontryptic peptides, LC-MS based quantification
- Metabolites are also key: MS-based methods both targeted and untargeted; guided by metaproteomics and/or metatranscriptomics
- Challenges: sample prep, abundance of secreted molecules, analytical methods for identification and quantification of proteins/peptides/metabolites

Metaproteomic re-analysis of clinical cancer samples

Clinical tissue samples collected for quantitative MS-based proteomics of host

(Andrew Rajczewski)

Workflow: reducing protein sequence search space for MS/MS data

Microbial peptides are present and detectable in gastric tumor samples

Microbial taxa and enriched functions of metaproteins in gastric cancer

GO Biological Processes in validated microbial peptides of Gastric Cancer data

Microbial peptides are present and detectable in head/neck cancer

Microbial taxa and enriched functions of metaproteins in HNSCC

GO Biological Processes in validated microbial peptides of HNSCC data

Other translational studies: Microbiota contributions in broncheolavage fluid from cystic fibrosis (CF) patients

Generating comprehensive databases of CF and DC microbiomes:

- 1) BALF pelleting, lysis, and digestion;
- **2) H**igh pH RPLC offline fractionation and concatenation (step omitted for individual sample analysis)
- **3)** LC-FAIMS-MS/MS on an Orbitrap Eclipse
- **4)** Galaxy-P/MetaNovo for matching MS/MS;
- **5)** Generation of a compact microbial database with taxonomic and functional information from Galaxy-P/Unipept+metaQuantome.

(Monica Kruk, and collaborators from Lurie's Children's Hospital, Chicago, IL)

Deep profiling of CF BALF cells to identify microbial contributors

(Monica Kruk)

Summary: translational metaproteomics offers challenges and opportunities

- Characterizing metaproteins in clinically-relevant samples provides valuable insights into functional microbe-derived molecules that may regulate host phenotypes
- Complementarity to metagenomics/metatranscriptomics; metaproteomics is helped by availability of paired metagenomic or metatranscriptomic sequencing data
- Analytical challenges: in many clinical samples the microbial proteins are rather low in abundance
 - Requires steps to increase depth/sensitivity
 - Enrichment of microbial proteins could be huge benefit

(Richard Martinez, Ryan Hunter, Pratik Jagtap, Tim Griffin, unpublished data)