

UNRAVELLING THE FUNCTIONS OF MICROBIOMES: A COMPREHENSIVE EVALUATION OF SOFTWARE TOOLS FOR FUNCTIONAL METAPROTEOMICS <u>Caleb Easterly¹, Carolin Kolmeder², Thilo Muth³, Bart Mesuere⁴, Subina Mehta¹, Jaime Huerta-Cepas⁶, Bjoern Gruening⁷, Michael Riffle⁸, Damon May⁸,</u> W. Judson Hervey⁹, Alessandro Tanca¹⁰, Brook L Nunn⁸, Joel Rudney¹, Timothy J. Griffin¹, & Pratik D. Jagtap¹ ¹Biochem. Mol Biol. Biophysics, University of Minnesota, Minnesota, Minnesota, MN; ⁶European Molecular ¹Biochem. Mol Biol. Biophysics, University of Helsinki, Finland; ³Robert Koch Institute, Berlin, Germany; ⁴Ghent University, Ghent, Belgium; ⁵Minnesota Supercomputing Institute, UMN, Minneapolis, MN; ⁶European Molecular Biology Laboratory, Heidelberg, Germany; ⁷University of Freiburg, Freiburg, Freiburg, Freiburg, Germany; ⁸University of Kashington DC; ¹⁰Porto Conte Ricerche Science and Technology Park of Sardinia, Alghero, Italy

INTRODUCTION

- Metaproteomics research involves large-scale characterization of the entire protein complement of the microbiome. Metaproteomics has the potential to unravel the mechanistic details of microbial interactions with the host/environment by analyzing the microbiome's functional dynamics at the moment of analysis
- Many methods have been developed to determine the functional role of proteins expressed by the microbiome and subsequently shed light on its biological significance. The available software tools differ in emphasis, features, reproducibility, and other characteristics.
- By using a previously published oral microbiome dataset, we explore the following qualitative and quantitative features of several functional analysis software tools (listed below):

DATA

- number of functional terms obtained
- different functional ontologies available
- ability to leverage quantitative information
- visualization of datasets
- biological conclusions drawn from data
- vi) reproducibility, ease of use, and availability.

eggNOG mapper: Huerta-Cepas, et al., 2017 MEGAN: Huson, et al., 2016

- MetaGOmics: Riffle. et al., 2017
- MetaProteomeAnalyzer: Muth, et al., 2018 Unipept: Mesuere, et al., 2018 (functional) analysis version, in beta)

Mass spectral data (Rudney, et al., *Microbiome*

- Previous functional analysis of the data had shown sucrose-induced changes in protein relative
- Mass spectra were searched against the Human Oral Microbiome database (HOMD) to obtain peptide sequences, and spectral counts were calculated for each peptide

2015; PRIDE PXD003151) were acquired from plaque sampled from a patient at high risk for dental caries and grown in biofilm reactor in the presence and absence of sucrose (WS and NS, respectively).

- abundance patterns for several metabolic pathways

(Rudney, et al., *Microbiome* 2015)

METHODS

We analyzed the data with several functional analysis tools (see tool list in **Introduction**), using standard procedures for each tool and the input files indicated in the **Tool Features** table. The outputs were compared using several methods:

- 1) Fold changes (WS over NS) were calculated based on spectral counts and ranked for the output protein, GO term, or orthologous group. The top 5 were compared across the tools to determine the level of consistency.
- 2) The outputs from each tool were translated to GO terms (see procedure to the right). To determine if any differences were due to more specific GO terms, we mapped the obtained GO terms to the GO generic slim, which contains only 232 high-level terms, compared to the 47,248 GO terms in the full ontology (as of 5/29/2018)

Translation to GO

terms <u>MEGAN</u> Query eggNOG API with orthologous group IDs

MetaProteomeAnalyzer: Query UniProt API with protein IDs

Other tools: GO terms are already orovided

	eggNOG Mapper	MEGAN	MetaGOmics	MetaProteomeAnalyzer	Unipept	
Inputs	Peptide list	Peptide list, search database, BLAST-P results	Peptides w/spectral counts, search database	Spectrum files (MGF), search database	Peptide list	
Outputs	Peptides annotated with protein hits and functional terms	Many options – we used eggNOG orthologous groups with spectral counts	GO terms with fold changes and associated statistical significance	UniProt protein IDs	GO terms with spectral counts	
Level of Analysis	Peptide (terms from protein orthologs)	Protein	Peptide	Meta-protein / protein groups	Peptide	
Annotation database	eggNOG	NCBI nr	UniProtKB	UniProtKB	UniProtKB	
Functional ontologies	COG categories, GO terms, BiGG reactions, KO groups	InterPro2GO, eggNOG orthologous group, SEED and KEGG	GO Terms	EC numbers, protein-level information from UniProt (ontology terms), KEGG, KO groups	GO terms, EC numbers	
Comparative Analysis of Multiple Samples	Yes	Yes	Yes (2 samples only)	No	No	
Quantitation	Manual (Spectral Counts, MS1 intensities)	Spectral Counts	Spectral Counts	Spectral Counts	Spectral Counts	
Functional Visualization	Downstream processing required	Heatmaps, PCA plots, hierarchical cluster analysis, tree diagrams, rarefaction curves	Static GO hierarchy colored by up/downregulation	Interactive bar + pie charts	Interactive treeview of E.C. numbers	
Operating System	macOS, Linux	macOS, Linux, Windows	Web	macOS, Linux, Windows	Web	
Open Source	Yes	No	Yes	Yes	Yes	
stomizability of Analysis	Moderate	High	Low	Low	Low	

Custon

Com

Func

		Native Outp	ut		GO term tr	anslation			
ΤοοΙ	Туре	# Total	# Significant at FDR < 5%	# Total	# Exclusive to Tool	# Slim Total	# Slim Exclusive	mpa -	0.13
eggNOG mapper	Proteins	18,440	NA	6,155	3070	144	13	eggnog –	0.19
MEGAN	eggNOG orthologous groups	1,665	NA	1,450	103	82	0	unipept –	0.15
NetaGOmics	GO terms	3,944	1,958	3,944	645	116	0	metagomics -	0.27
MPA	Proteins	23,169	NA	1,102	15	103	0	megan -	1.00
Unipept	GO terms	2,036	NA	2,036	217	123	0	Jaccard	_{mega} indi

Identification Statistics

Comparison of number of identifications obtained by each tool. The "exclusive" columns indicate the number of GO terms that were obtained exclusively by each tool. Note that MetaGOmics is the only tool that performs statistical tests with 2 samples.

QUANTITATIVE RESULTS

			Ful
mpa -	0.13	0.26	0.
eggnog -	0.19	0.38	0.
unipept –	0.15	0.37	1.
tagomics -	0.27	1.00	0.
megan -	1.00	0.27	0.

ces between the sets of GO terms, where 1 indicates identical and 0 disjoint The Jaccard index is defined as $I(A, B) = |A \cap B|/|A \cup B|$ - that is, the size of the intersection divided by the size of the union. When mapped to the generic GO slim, the sets are more similar. In addition, MEGAN is the least similar to the others.

Top 5 Upregulated Proteins/GO Terms/Orthologous Groups

	eggNOG mapper (eggNOG proteins)	MEGAN (eggNOG orthologous groups)	MetaGOmics (GO terms)	MetaProteomeAnalyser (UniProtKB proteins)	Unipept (GO terms)
Рер	tidase propeptide and YPED domain	Streptococcal surface antigen repeat	Pyruvate oxidase activity	Ferritin	Peptide deformylase activity
	Orn lys arg decarboxylase	Acetolactate synthase	Oxidoreductase activity, acting on the aldehyde or oxo group of donors, oxygen as acceptor	Non-heme iron-containing ferritin	PFK-1 activity
	Glycosyl hydrolase family 70	Catalyzes the condensation of the acetyl group of acetyl- CoA with 3-methyl-2-oxobutanoate to form 3-carboxy-3- hydroxy-4-methylpentanoate	Serine-type endopeptidase inhibitor activity	Clp protease ClpX	D-tagatose 6-phosphate catabolic process
DNA	protection during starvation protein	Beta-hexosaminidase	Response to wounding	Chaperone protein DnaK	Tagatose-6-phosphate kinase activity
Oxidoredu	ictase required for the transfer of electrons from pyruvate to flavodoxin	Cell wall	Poly(ribitol phosphate) teichoic acid metabolic process	ATP-dependent protease ATP- binding subunit	Response to wounding

TOOL FEATURES

GO Term Similarities

For each GO term identified by both Unipept and MetaGOmics (1625 GO terms, or 80% of Unipept's terms and 41% of MetaGOmics' terms), a fold change (WS over NS) was estimated. The Pearson correlation coefficient was 0.693 ($p < 10^{-16}$). MetaGOmics and Unipept were the only two tools that report spectral counts associated with the same identifiers (GO terms)

SUMMARY & CONCLUSIONS

Different tools show very different results with the same data The tools returned very different lists of GO terms

- When mapped to the GO slim, the differences were reduced, suggesting that more specific terms drive the majority of the difference
- MEGAN was generally the least similar to the other tools
- eggNOG mapper provided by far the most GO terms
- > When the functional objects (protein, GO term, or orthologous groups) were ranked by fold change, the top 5 results provided by each tool show very little overlap
 - The reasons for this are unclear, but may be partially due
- to the tools' different databases and mapping approaches Even for two tools using the same ontology and database (Unipept and MetaGOmics), fairly different results were seen.
 - The fold changes had a modest correlation (0.693), and the GO term lists had a Jaccard index of only 0.37
- > In general, it is difficult to compare results due to the use of different ontologies by the different tools

Microbiome functional analysis tools offer a variety of analysis paradiams

- Interactive versus automated
- Different ontologies
- Peptide-centric versus protein-centric
- Quantitative versus qualitative

The tools analyzed here do not support fully quantitative analysis

Fully quantitative analysis requires the ability to analyze multiple samples and the use of labeled or label-free quantitative values

FUTURE DIRECTIONS

timate goal: Fulfill the functional analysis needs of crobiome/metaproteome researchers

- Explore more fully the reasons for the discrepancies between tools Provide a benchmark dataset containing known functions
- Identify ontologies best suited for microbiome studies
- Allow analysis of multiple samples and inter- and intra samples comparison
- Promote and move towards fully quantitative analysis

eaching this goal requires the collaboration of icrobiologists, metaproteomics researchers, and oinformaticians.

ACKNOWLEDGEMENTS

hanks to Minnesota Supercomputing Institute at University of Minnesota for providing essential infrastructure This project is supported by National Science Foundation (NSF) grant 1458524 and National Institutes of Health NIH) grant U24CA199347.

The opinions and assertions contained herein are those of the authors and are not to be construed as those of the US Navy, the military service at large, or the US Government.