COMMUNITY-BASED DEVELOPMENT AND EVALUATION OF BIOLOGICAL MASS SPECTROMETRY SOFTWARE VIA THE GALAXY TOOL SHED

Bart Gottschalk1; Pratik Jagtap2; Harald Barnes3; Marc Vandel; Björn Grüning; Ira Cooke4; James Johnson5; John Chilton6; LeeAnn Higgins2; Todd Markowski7; Trevor Weinblum8; Anne-Francoise Lamblin1; Yue Chen7; Sangtae Kim8; Lennart Martens9; Tim Griffin6

1Minnesota Supercomputing Institute, UMN, Minneapolis, MN; 2Center for Mass Spectrometry and Proteomics, UMN, St.Paul, MN; 3University of Bergen, Bergen, Norway; 4University of Freiburg, Freiburg, Germany; 5La Trobe University, Melbourne, Australia; 6PennState University, University Park, PA; 7University of Minnesota, Minneapolis, MN; 8Pacific Northwest National Laboratory, Richland, WA; 9Ghent University, Ghent, Belgium

INTRODUCTION

The GalaxyP workbench is an extension of the widely used genomics Galaxy platform and is designed to support proteomics analytical workflows. Data and software sharing is at the core of Galaxy and contributions from the Galaxy community in maintaining the high quality of the tools being shared. To effectively engage the larger community of users and their communication with developers and ensure tool quality, the GalaxyP team has implemented a standard process for external developers interested in developing GalaxyP tools.

METHODS

• SearchGUI for search algorithms such as MS-GF+, X!Tandem and OMSA along with PeptideShaker were chosen as software tools that would be developed, wrapped and deposited in Galaxy toolshed before installing it on public GalaxyP site.
• Galaxy Toolshed is designed to allow individuals or groups to share tools that have been prepared for installation and execution within Galaxy.
• GalaxyP Google Group User forum was used for coordination of tool wrapping, depositing into the Tool Shed, installation on Public GalaxyP, tool testing, and feedback to the tool developer. Developers and users in nine institutes across five countries communicated using this forum. The User Forum is available for other users to browse, comment and reference.
• The methodology accounts for the necessity of an iterative process which results in a tool that has been tested and verified to work in a standard Galaxy installation.

REFERENCES

PeptideShaker: http://peptide-shaker.googlecode.com
SearchGUI: http://searchgui.googlecode.com
MS-GF+: http://omics.pnl.gov/software/ms-gf
Galaxy Tool Shed: http://toolshed.g2.bx.psu.edu
Galaxy Test Tool Shed: http://tooltest.g2.bx.psu.edu
GalaxyP Google Group User Forum: https://groups.google.com/a/umn.edu/forum/#!forum/galaxyp
Public GalaxyP: https://usegalaxyp.org
Public Galaxy: https://usegalaxy.org

ACKNOWLEDGEMENTS

• The Galaxy Project: http://galaxyproject.org
• Anne Lamblin for initiating the Galaxy Projects at the Minnesota Supercomputing Institute
• GalaxyP is supported through the National Science Foundation, DB-AB award 1147079 "GalaxyP: A new community-based informatics paradigm for MS-based proteomics"